Exercise 75

For the following exercise, find a domain on which the function f is one-to-one and non-decreasing. Write the domain in interval notation. Then find the inverse of f restricted to that domain.

$$
f(x)=x^{2}+1
$$

Solution

The function as it's given is not one-to-one because it fails the horizontal line test.

However, by taking the restriction of $f(x)$ to $x \geq 0$, it can be made one-to-one.

The domain on which $f(x)$ is one-to-one and non-decreasing is $[0, \infty)$. To find the inverse function, switch x and y in the given equation.

$$
x=y^{2}+1
$$

Solve for y.

$$
x-1=y^{2}
$$

Take the square root of both sides.

$$
\sqrt{x-1}=\sqrt{y^{2}}
$$

Since there's an even power under an even root and the result is to an odd power, an absolute value sign is needed.

$$
\sqrt{x-1}=|y|
$$

Remove the absolute value sign by placing \pm on the left side.

$$
\pm \sqrt{x-1}=y
$$

y was originally x, which has a domain of $[0, \infty)$. To be consistent with this, the plus sign should be chosen. Therefore, the inverse function is

$$
f^{-1}(x)=\sqrt{x-1} .
$$

